Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: evidence for distinct metabolic pathways and implications for iron-mediated cardiotoxicity of antitumor therapy.

نویسندگان

  • G Minotti
  • R Ronchi
  • E Salvatorelli
  • P Menna
  • G Cairo
چکیده

Changes in iron homeostasis have been implicated in cardiotoxicity induced by the anticancer anthracycline doxorubicin (DOX). Certain products of DOX metabolism, like the secondary alcohol doxorubicinol (DOXol) or reactive oxygen species (ROS), may contribute to cardiotoxicity by inactivating iron regulatory proteins (IRP) that modulate the fate of mRNAs for transferrin receptor and ferritin. It is important to know whether DOXol and ROS act by independent or combined mechanisms. Therefore, we monitored IRP activities in H9c2 rat embryo cardiomyocytes exposed to DOX or to analogues which were selected to achieve a higher formation of secondary alcohol metabolite (daunorubicin), a concomitant increase of alcohol metabolite and decrease of ROS (5-iminodaunorubicin), or a defective conversion to alcohol metabolite (mitoxantrone). On the basis of such multiple comparisons, we characterized that DOXol was able to remove iron from the catalytic Fe-S cluster of cytoplasmic aconitase, making this enzyme switch to the cluster-free IRP-1. ROS were not involved in this step, but they converted the IRP-1 produced by DOXol into a null protein which did not bind to mRNA, nor was it able to switch back to aconitase. DOX was also shown to inactivate IRP-2, which does not assemble or disassemble a Fe-S cluster. Comparisons between DOX and the analogues revealed that IRP-2 was inactivated only by ROS. Thus, DOX can inactivate both IRP through a sequential action of DOXol and ROS on IRP-1 or an independent action of ROS on IRP-2. This information serves guidelines for designing anthracyclines that spare iron homeostasis and induce less severe cardiotoxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A journey in doxorubicin-induced cardiotoxicity with emphasizing on the role of Connexin 43 and Sirtuin-3

Cancer has become a major health problem worldwide. The reported incidence of new cancer cases is estimated at 19.3 million, with a mortality rate of 10 million in the world in 2020. There are some approaches for cancer treatment such as chemotherapy, neoadjuant surgery, hormone therapy, and radiotherapy. Chemotherapy is an aggressive form of chemical drug therapy meant to destroy rapidly growi...

متن کامل

The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium.

Anticancer therapy with doxorubicin (DOX) is limited by severe cardiotoxicity, presumably reflecting the intramyocardial formation of drug metabolites that alter cell constituents and functions. In a previous study, we showed that NADPH-supplemented cytosolic fractions from human myocardial samples can enzymatically reduce a carbonyl group in the side chain of DOX, yielding a secondary alcohol ...

متن کامل

Molecular pharmacology of the interaction of anthracyclines with iron.

Although anthracyclines such as doxorubicin are widely used antitumor agents, a major limitation for their use is the development of cardiomyopathy at high cumulative doses. This severe adverse side effect may be due to interactions with cellular iron metabolism, because iron loading promotes anthracycline-induced cell damage. On the other hand, anthracycline-induced cardiotoxicity is significa...

متن کامل

Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: role of oxidant-induced iron signaling in apoptosis.

In the past, investigators have successfully used iron chelators to mitigate the cardiotoxicity of doxorubicin (DOX), a widely used anticancer drug that induces reactive oxygen species (ROS), oxidative damage, and apoptosis. Although intracellular iron plays a critical role in initiating DOX-induced apoptosis, the molecular mechanism(s) that link iron, ROS, and apoptosis are still unknown. In t...

متن کامل

The role of iron in anthracycline cardiotoxicity

The clinical use of the antitumor anthracycline Doxorubicin is limited by the risk of severe cardiotoxicity. The mechanisms underlying anthracycline-dependent cardiotoxicity are multiple and remain uncompletely understood, but many observations indicate that interactions with cellular iron metabolism are important. Convincing evidence showing that iron plays a role in Doxorubicin cardiotoxicity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 61 23  شماره 

صفحات  -

تاریخ انتشار 2001